Tutorial

How To Analyze Managed Redis Database Statistics Using the Elastic Stack on Ubuntu 18.04

How To Analyze Managed Redis Database Statistics Using the Elastic Stack on Ubuntu 18.04

The author selected the Free and Open Source Fund to receive a donation as part of the Write for DOnations program.

Introduction

Database monitoring is the continuous process of systematically tracking various metrics that show how the database is performing. By observing performance data, you can gain valuable insights and identify possible bottlenecks, as well as find additional ways of improving database performance. Such systems often implement alerting that notifies administrators when things go wrong. Gathered statistics can be used to not only improve the configuration and workflow of the database, but also those of client applications.

The benefit of using the Elastic Stack (ELK stack) for monitoring your managed database is its excellent support for searching and the ability to ingest new data very quickly. It does not excel at updating the data, but this trade-off is acceptable for monitoring and logging purposes, where past data is almost never changed. Elasticsearch offers a powerful means of querying the data, which you can use through Kibana to get a better understanding of how the database fares through different time periods. This will allow you to correlate database load with real-life events to gain insight into how the database is being used.

In this tutorial, you’ll import database metrics, generated by the Redis INFO command, into Elasticsearch via Logstash. This entails configuring Logstash to periodically run the command, parse its output, and send it to Elasticsearch for indexing immediately afterward. The imported data can later be analyzed and visualized in Kibana. By the end of the tutorial, you’ll have an automated system pulling in Redis statistics for later analysis.

Prerequisites

Step 1 — Installing and Configuring Logstash

In this section, you will install Logstash and configure it to pull statistics from your Redis database cluster, then parse them to send to Elasticsearch for indexing.

Start off by installing Logstash with the following command:

  1. sudo apt install logstash -y

Once Logstash is installed, enable the service to automatically start on boot:

  1. sudo systemctl enable logstash

Before configuring Logstash to pull the statistics, let’s see what the data itself looks like. To connect to your Redis database, head over to your Managed Database Control Panel, and under the Connection details panel, select Flags from the dropdown:

Managed Database Control Panel

You’ll be shown a preconfigured command for the Redli client, which you’ll use to connect to your database. Click Copy and run the following command on your server, replacing redli_flags_command with the command you have just copied:

  1. redli_flags_command info

Since the output from this command is long, we’ll explain this broken down into its different sections.

In the output of the Redis info command, sections are marked with #, which signifies a comment. The values are populated in the form of key:value, which makes them relatively easy to parse.

The Server section contains technical information about the Redis build, such as its version and the Git commit it’s based on, while the Clients section provides the number of currently opened connections.

Output
# Server redis_version:6.2.6 redis_git_sha1:4f4e829a redis_git_dirty:1 redis_build_id:5861572cb79aebf3 redis_mode:standalone os:Linux 5.11.12-300.fc34.x86_64 x86_64 arch_bits:64 multiplexing_api:epoll atomicvar_api:atomic-builtin gcc_version:11.2.1 process_id:79 process_supervised:systemd run_id:b8a0aa25d8f49a879112a04a817ac2acd92e0c75 tcp_port:25060 server_time_usec:1640878632737564 uptime_in_seconds:1679 uptime_in_days:0 hz:10 configured_hz:10 lru_clock:13488680 executable:/usr/bin/redis-server config_file:/etc/redis.conf io_threads_active:0 # Clients connected_clients:4 cluster_connections:0 maxclients:10032 client_recent_max_input_buffer:24 client_recent_max_output_buffer:0 ...

Memory confirms how much RAM Redis has allocated for itself, as well as the maximum amount of memory it can possibly use. If it starts running out of memory, it will free up keys using the strategy you specified in the Control Panel (shown in the maxmemory_policy field in this output).

Output
... # Memory used_memory:977696 used_memory_human:954.78K used_memory_rss:9977856 used_memory_rss_human:9.52M used_memory_peak:977696 used_memory_peak_human:954.78K used_memory_peak_perc:100.00% used_memory_overhead:871632 used_memory_startup:810128 used_memory_dataset:106064 used_memory_dataset_perc:63.30% allocator_allocated:947216 allocator_active:1273856 allocator_resident:3510272 total_system_memory:1017667584 total_system_memory_human:970.52M used_memory_lua:37888 used_memory_lua_human:37.00K used_memory_scripts:0 used_memory_scripts_human:0B number_of_cached_scripts:0 maxmemory:455081984 maxmemory_human:434.00M maxmemory_policy:noeviction allocator_frag_ratio:1.34 allocator_frag_bytes:326640 allocator_rss_ratio:2.76 allocator_rss_bytes:2236416 rss_overhead_ratio:2.84 rss_overhead_bytes:6467584 mem_fragmentation_ratio:11.43 mem_fragmentation_bytes:9104832 mem_not_counted_for_evict:0 mem_replication_backlog:0 mem_clients_slaves:0 mem_clients_normal:61504 mem_aof_buffer:0 mem_allocator:jemalloc-5.1.0 active_defrag_running:0 lazyfree_pending_objects:0 ...

In the Persistence section, you can see the last time Redis saved the keys it stores to disk, and if it was successful. The Stats section provides numbers related to client and in-cluster connections, the number of times the requested key was (or wasn’t) found, and so on.

Output
... # Persistence loading:0 current_cow_size:0 current_cow_size_age:0 current_fork_perc:0.00 current_save_keys_processed:0 current_save_keys_total:0 rdb_changes_since_last_save:0 rdb_bgsave_in_progress:0 rdb_last_save_time:1640876954 rdb_last_bgsave_status:ok rdb_last_bgsave_time_sec:1 rdb_current_bgsave_time_sec:-1 rdb_last_cow_size:217088 aof_enabled:0 aof_rewrite_in_progress:0 aof_rewrite_scheduled:0 aof_last_rewrite_time_sec:-1 aof_current_rewrite_time_sec:-1 aof_last_bgrewrite_status:ok aof_last_write_status:ok aof_last_cow_size:0 module_fork_in_progress:0 module_fork_last_cow_size:0 # Stats total_connections_received:202 total_commands_processed:2290 instantaneous_ops_per_sec:0 total_net_input_bytes:38034 total_net_output_bytes:1103968 instantaneous_input_kbps:0.01 instantaneous_output_kbps:0.00 rejected_connections:0 sync_full:0 sync_partial_ok:0 sync_partial_err:0 expired_keys:0 expired_stale_perc:0.00 expired_time_cap_reached_count:0 expire_cycle_cpu_milliseconds:29 evicted_keys:0 keyspace_hits:0 keyspace_misses:0 pubsub_channels:0 pubsub_patterns:0 latest_fork_usec:452 total_forks:1 migrate_cached_sockets:0 slave_expires_tracked_keys:0 active_defrag_hits:0 active_defrag_misses:0 active_defrag_key_hits:0 active_defrag_key_misses:0 tracking_total_keys:0 tracking_total_items:0 tracking_total_prefixes:0 unexpected_error_replies:0 total_error_replies:0 dump_payload_sanitizations:0 total_reads_processed:2489 total_writes_processed:2290 io_threaded_reads_processed:0 io_threaded_writes_processed:0 ...

By looking at the role under Replication, you’ll know if you’re connected to a primary or replica node. The rest of the section provides the number of currently connected replicas and the amount of data that the replica is lacking in regards to the primary. There may be additional fields if the instance you are connected to is a replica.

Note: The Redis project uses the terms “master” and “slave” in its documentation and in various commands. DigitalOcean generally prefers the alternative terms “primary” and “replica.” This guide will default to the terms “primary” and “replica” whenever possible, but note that there are a few instances where the terms “master” and “slave” unavoidably come up.

Output
... # Replication role:master connected_slaves:0 master_failover_state:no-failover master_replid:f727fad3691f2a8d8e593b087c468bbb83703af3 master_replid2:0000000000000000000000000000000000000000 master_repl_offset:0 second_repl_offset:-1 repl_backlog_active:0 repl_backlog_size:45088768 repl_backlog_first_byte_offset:0 repl_backlog_histlen:0 ...

Under CPU, you’ll see the amount of system (used_cpu_sys) and user (used_cpu_user) CPU power Redis is consuming at the moment. The Cluster section contains only one unique field, cluster_enabled, which serves to indicate that the Redis cluster is running.

Output
... # CPU used_cpu_sys:1.617986 used_cpu_user:1.248422 used_cpu_sys_children:0.000000 used_cpu_user_children:0.001459 used_cpu_sys_main_thread:1.567638 used_cpu_user_main_thread:1.218768 # Modules # Errorstats # Cluster cluster_enabled:0 # Keyspace

Logstash will be tasked to periodically run the info command on your Redis database (similar to how you just did), parse the results, and send them to Elasticsearch. You’ll then be able to access them later from Kibana.

You’ll store the configuration for indexing Redis statistics in Elasticsearch in a file named redis.conf under the /etc/logstash/conf.d directory, where Logstash stores configuration files. When started as a service, it will automatically run them in the background.

Create redis.conf using your favorite editor (for example, nano):

  1. sudo nano /etc/logstash/conf.d/redis.conf

Add the following lines:

/etc/logstash/conf.d/redis.conf
input {
	exec {
		command => "redis_flags_command info"
		interval => 10
		type => "redis_info"
	}
}

filter {
	kv {
		value_split => ":"
		field_split => "\r\n"
		remove_field => [ "command", "message" ]
	}

	ruby {
		code =>
		"
		event.to_hash.keys.each { |k|
			if event.get(k).to_i.to_s == event.get(k) # is integer?
				event.set(k, event.get(k).to_i) # convert to integer
			end
			if event.get(k).to_f.to_s == event.get(k) # is float?
				event.set(k, event.get(k).to_f) # convert to float
			end
		}
		puts 'Ruby filter finished'
		"
	}
}

output {
    elasticsearch {
        hosts => "http://localhost:9200"
        index => "%{type}"
    }
}

Remember to replace redis_flags_command with the command shown in the control panel that you used earlier in the step.

You define an input, which is a set of filters that will run on the collected data, and an output that will send the filtered data to Elasticsearch. The input consists of the exec command, which will run a command on the server periodically, after a set time interval (expressed in seconds). It also specifies a type parameter that defines the document type when indexed in Elasticsearch. The exec block passes down an object containing two fields, command and message string. The command field will contain the command that was run, and the message will contain its output.

There are two filters that will run sequentially on the data collected from the input. The kv filter stands for key-value filter, and is built-in to Logstash. It is used for parsing data in the general form of keyvalue_separatorvalue and provides parameters for specifying what are considered value and field separators. The field separator pertains to strings that separate the data formatted in the general form from each other. In the case of the output of the Redis INFO command, the field separator (field_split) is a new line, and the value separator (value_split) is :. Lines that do not follow the defined form will be discarded, including comments.

To configure the kv filter, you pass : to thevalue_split parameter, and \r\n (signifying a new line) to the field_split parameter. You also order it to remove the command and message fields from the current data object by passing them to remove_field as elements of an array, because they contain data that are now useless.

The kv filter represents the value it parsed as a string (text) type by design. This raises an issue because Kibana can’t easily process string types, even if it’s actually a number. To solve this, you’ll use custom Ruby code to convert the number-only strings to numbers, where possible. The second filter is a ruby block that provides a code parameter accepting a string containing the code to be run.

event is a variable that Logstash provides to your code, and contains the current data in the filter pipeline. As was noted before, filters run one after another, meaning that the Ruby filter will receive the parsed data from the kv filter. The Ruby code itself converts the event to a Hash and traverses through the keys, then checks if the value associated with the key could be represented as an integer or as a float (a number with decimals). If it can, the string value is replaced with the parsed number. When the loop finishes, it prints out a message (Ruby filter finished) to report progress.

The output sends the processed data to Elasticsearch for indexing. The resulting document will be stored in the redis_info index, defined in the input and passed in as a parameter to the output block.

Save and close the file.

You’ve installed Logstash using apt and configured it to periodically request statistics from Redis, process them, and send them to your Elasticsearch instance.

Step 2 — Testing the Logstash Configuration

Now you’ll test the configuration by running Logstash to verify it will properly pull the data.

Logstash supports running a specific configuration by passing its file path to the -f parameter. Run the following command to test your new configuration from the last step:

  1. sudo /usr/share/logstash/bin/logstash -f /etc/logstash/conf.d/redis.conf

It may take some time to show the output, but you’ll soon see something similar to the following:

Output
Using bundled JDK: /usr/share/logstash/jdk OpenJDK 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release. WARNING: Could not find logstash.yml which is typically located in $LS_HOME/config or /etc/logstash. You can specify the path using --path.settings. Continuing using the defaults Could not find log4j2 configuration at path /usr/share/logstash/config/log4j2.properties. Using default config which logs errors to the console [INFO ] 2021-12-30 15:42:08.887 [main] runner - Starting Logstash {"logstash.version"=>"7.16.2", "jruby.version"=>"jruby 9.2.20.1 (2.5.8) 2021-11-30 2a2962fbd1 OpenJDK 64-Bit Server VM 11.0.13+8 on 11.0.13+8 +indy +jit [linux-x86_64]"} [INFO ] 2021-12-30 15:42:08.932 [main] settings - Creating directory {:setting=>"path.queue", :path=>"/usr/share/logstash/data/queue"} [INFO ] 2021-12-30 15:42:08.939 [main] settings - Creating directory {:setting=>"path.dead_letter_queue", :path=>"/usr/share/logstash/data/dead_letter_queue"} [WARN ] 2021-12-30 15:42:09.406 [LogStash::Runner] multilocal - Ignoring the 'pipelines.yml' file because modules or command line options are specified [INFO ] 2021-12-30 15:42:09.449 [LogStash::Runner] agent - No persistent UUID file found. Generating new UUID {:uuid=>"acc4c891-936b-4271-95de-7d41f4a41166", :path=>"/usr/share/logstash/data/uuid"} [INFO ] 2021-12-30 15:42:10.985 [Api Webserver] agent - Successfully started Logstash API endpoint {:port=>9600, :ssl_enabled=>false} [INFO ] 2021-12-30 15:42:11.601 [Converge PipelineAction::Create<main>] Reflections - Reflections took 77 ms to scan 1 urls, producing 119 keys and 417 values [WARN ] 2021-12-30 15:42:12.215 [Converge PipelineAction::Create<main>] plain - Relying on default value of `pipeline.ecs_compatibility`, which may change in a future major release of Logstash. To avoid unexpected changes when upgrading Logstash, please explicitly declare your desired ECS Compatibility mode. [WARN ] 2021-12-30 15:42:12.366 [Converge PipelineAction::Create<main>] plain - Relying on default value of `pipeline.ecs_compatibility`, which may change in a future major release of Logstash. To avoid unexpected changes when upgrading Logstash, please explicitly declare your desired ECS Compatibility mode. [WARN ] 2021-12-30 15:42:12.431 [Converge PipelineAction::Create<main>] elasticsearch - Relying on default value of `pipeline.ecs_compatibility`, which may change in a future major release of Logstash. To avoid unexpected changes when upgrading Logstash, please explicitly declare your desired ECS Compatibility mode. [INFO ] 2021-12-30 15:42:12.494 [[main]-pipeline-manager] elasticsearch - New Elasticsearch output {:class=>"LogStash::Outputs::ElasticSearch", :hosts=>["http://localhost:9200"]} [INFO ] 2021-12-30 15:42:12.755 [[main]-pipeline-manager] elasticsearch - Elasticsearch pool URLs updated {:changes=>{:removed=>[], :added=>[http://localhost:9200/]}} [WARN ] 2021-12-30 15:42:12.955 [[main]-pipeline-manager] elasticsearch - Restored connection to ES instance {:url=>"http://localhost:9200/"} [INFO ] 2021-12-30 15:42:12.967 [[main]-pipeline-manager] elasticsearch - Elasticsearch version determined (7.16.2) {:es_version=>7} [WARN ] 2021-12-30 15:42:12.968 [[main]-pipeline-manager] elasticsearch - Detected a 6.x and above cluster: the `type` event field won't be used to determine the document _type {:es_version=>7} [WARN ] 2021-12-30 15:42:13.065 [[main]-pipeline-manager] kv - Relying on default value of `pipeline.ecs_compatibility`, which may change in a future major release of Logstash. To avoid unexpected changes when upgrading Logstash, please explicitly declare your desired ECS Compatibility mode. [INFO ] 2021-12-30 15:42:13.090 [Ruby-0-Thread-10: :1] elasticsearch - Using a default mapping template {:es_version=>7, :ecs_compatibility=>:disabled} [INFO ] 2021-12-30 15:42:13.147 [Ruby-0-Thread-10: :1] elasticsearch - Installing Elasticsearch template {:name=>"logstash"} [INFO ] 2021-12-30 15:42:13.192 [[main]-pipeline-manager] javapipeline - Starting pipeline {:pipeline_id=>"main", "pipeline.workers"=>2, "pipeline.batch.size"=>125, "pipeline.batch.delay"=>50, "pipeline.max_inflight"=>250, "pipeline.sources"=>["/etc/logstash/conf.d/redis.conf"], :thread=>"#<Thread:0x5104e975 run>"} [INFO ] 2021-12-30 15:42:13.973 [[main]-pipeline-manager] javapipeline - Pipeline Java execution initialization time {"seconds"=>0.78} [INFO ] 2021-12-30 15:42:13.983 [[main]-pipeline-manager] exec - Registering Exec Input {:type=>"redis_info", :command=>"redli --tls -h db-redis-fra1-68603-do-user-1446234-0.b.db.ondigitalocean.com -a hnpJxAgoH3Om3UwM -p 25061 info", :interval=>10, :schedule=>nil} [INFO ] 2021-12-30 15:42:13.994 [[main]-pipeline-manager] javapipeline - Pipeline started {"pipeline.id"=>"main"} [INFO ] 2021-12-30 15:42:14.034 [Agent thread] agent - Pipelines running {:count=>1, :running_pipelines=>[:main], :non_running_pipelines=>[]} Ruby filter finished Ruby filter finished Ruby filter finished ...

You’ll see the Ruby filter finished message being printed at regular intervals (set to 10 seconds in the previous step), which means that the statistics are being shipped to Elasticsearch.

You can exit Logstash by clicking CTRL + C on your keyboard. As previously mentioned, Logstash will automatically run all config files found under /etc/logstash/conf.d in the background when started as a service. Run the following command to start it:

  1. sudo systemctl start logstash

You’ve run Logstash to check if it can connect to your Redis cluster and gather data. Next, you’ll explore some of the statistical data in Kibana.

Step 3 — Exploring Imported Data in Kibana

In this section, you’ll explore and visualize the statistical data describing your database’s performance in Kibana.

In your web browser, navigate to your domain where you exposed Kibana as a part of the prerequisites. You’ll see the default welcome page:

Kibana - Welcome Page

Before exploring the data Logstash is sending to Elasticsearch, you’ll first need to add the redis_info index to Kibana. To do so, first select Explore on my own from the welcome page and then open the hamburger menu in the upper left corner. Under Analytics, click on Discover.

Kibana - Discover under Analytics

Kibana will then prompt you to create a new index pattern:

Kibana - Index Pattern Creation

Press on Create index pattern. You’ll see a form for creating a new Index Pattern. Index Patterns in Kibana provide a way to pull in data from multiple Elasticsearch indexes at once, and can be used to explore only one index.

Kibana - Create index pattern

On the right, Kibana lists all available indexes, such as redis_info that you’ve configured Logstash to use. Type it in the Name text field and select @timestamp from the dropdown as the Timestamp field. When you’re done, press on the Create index pattern button below.

To create and see existing visualizations, open the hamburger menu. Under Analytics, select Dashboard. When it loads, press on Create visualization to start creating a new one:

Kibana - New visualization

The left-side panel provides a list of values that Kibana can use to draw the visualization, which will be shown on the central part of the screen. On the upper-right hand side of the screen is the date range picker. If the @timestamp field is being used in the visualization, Kibana will only show the data belonging to the time interval specified in the range picker.

From the dropdown in the main part of the page, select Line under the Line and area section. Then, find the used_memory field from the list on the left and drag it to the central part. You’ll soon see a line visualization of the median amount of used memory through time:

Kibana - Median of Used Memory Visualization

On the right side, you can configure how the horizontal and vertical axis are processed. There, you can set the vertical axis to show the average values instead of median by pressing on the shown axis:

Kibana - Vertical axis values

You can select a different function, or supply your own:

Kibana - Axis functions

The graph will be immediately refreshed with the updated values.

In this step, you have visualized memory usage of your managed Redis database using Kibana. This will allow you to gain a better understanding of how your database is being used, which will help you optimize client applications, as well as your database itself.

Conclusion

You now have the Elastic stack installed on your server and configured to pull statistics data from your managed Redis database on a regular basis. You can analyze and visualize the data using Kibana, or some other suitable software, which will help you gather valuable insights into and real-world correlations about how your database is performing.

For more information about what you can do with your Redis Managed Database, visit the product docs. If you’d like to present the database statistics using another visualization type, check out the Kibana docs for further instructions.

Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.

Learn more about our products

About the authors
Default avatar
Savic

author



Still looking for an answer?

Ask a questionSearch for more help

Was this helpful?
 
Leave a comment


This textbox defaults to using Markdown to format your answer.

You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!

Try DigitalOcean for free

Click below to sign up and get $200 of credit to try our products over 60 days!

Sign up

Join the Tech Talk
Success! Thank you! Please check your email for further details.

Please complete your information!

Become a contributor for community

Get paid to write technical tutorials and select a tech-focused charity to receive a matching donation.

DigitalOcean Documentation

Full documentation for every DigitalOcean product.

Resources for startups and SMBs

The Wave has everything you need to know about building a business, from raising funding to marketing your product.

Get our newsletter

Stay up to date by signing up for DigitalOcean’s Infrastructure as a Newsletter.

New accounts only. By submitting your email you agree to our Privacy Policy

The developer cloud

Scale up as you grow — whether you're running one virtual machine or ten thousand.

Get started for free

Sign up and get $200 in credit for your first 60 days with DigitalOcean.*

*This promotional offer applies to new accounts only.