NumPy matrix multiplication can be done by the following three methods.
If you want element-wise matrix multiplication, you can use multiply() function.
import numpy as np
arr1 = np.array([[1, 2],
[3, 4]])
arr2 = np.array([[5, 6],
[7, 8]])
arr_result = np.multiply(arr1, arr2)
print(arr_result)
Output:
[[ 5 12]
[21 32]]
The below image shows the multiplication operation performed to get the result matrix.
If you want the matrix product of two arrays, use matmul() function.
import numpy as np
arr1 = np.array([[1, 2],
[3, 4]])
arr2 = np.array([[5, 6],
[7, 8]])
arr_result = np.matmul(arr1, arr2)
print(f'Matrix Product of arr1 and arr2 is:\n{arr_result}')
arr_result = np.matmul(arr2, arr1)
print(f'Matrix Product of arr2 and arr1 is:\n{arr_result}')
Output:
Matrix Product of arr1 and arr2 is:
[[19 22]
[43 50]]
Matrix Product of arr2 and arr1 is:
[[23 34]
[31 46]]
The below diagram explains the matrix product operations for every index in the result array. For simplicity, take the row from the first array and the column from the second array for each index. Then multiply the corresponding elements and then add them to reach the matrix product value.
The matrix product of two arrays depends on the argument position. So matmul(A, B) might be different from matmul(B, A).
The numpy dot() function returns the dot product of two arrays. The result is the same as the matmul() function for one-dimensional and two-dimensional arrays.
import numpy as np
arr1 = np.array([[1, 2],
[3, 4]])
arr2 = np.array([[5, 6],
[7, 8]])
arr_result = np.dot(arr1, arr2)
print(f'Dot Product of arr1 and arr2 is:\n{arr_result}')
arr_result = np.dot(arr2, arr1)
print(f'Dot Product of arr2 and arr1 is:\n{arr_result}')
arr_result = np.dot([1, 2], [5, 6])
print(f'Dot Product of two 1-D arrays is:\n{arr_result}')
Output:
Dot Product of arr1 and arr2 is:
[[19 22]
[43 50]]
Dot Product of arr2 and arr1 is:
[[23 34]
[31 46]]
Dot Product of two 1-D arrays is:
17
Recommended Readings:
Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.
While we believe that this content benefits our community, we have not yet thoroughly reviewed it. If you have any suggestions for improvements, please let us know by clicking the “report an issue“ button at the bottom of the tutorial.