Design patterns are very popular among software developers. A design pattern is a well-described solution to a common software problem.
Some of the benefits of using design patterns are:
Java design patterns are divided into three categories - creational, structural, and behavioral design patterns.
This article serves as an index for all the Java design pattern articles.
Creational design patterns provide solutions to instantiate an Object
in the best possible way for specific situations.
The singleton pattern restricts the instantiation of a Class
and ensures that only one instance of the class exists in the Java Virtual Machine. The implementation of the singleton pattern has always been a controversial topic among developers.
Note: Learn more about the Singleton Design Pattern.
The factory design pattern is used when we have a superclass with multiple subclasses and based on input, we need to return one of the subclasses. This pattern takes out the responsibility of the instantiation of a Class
from the client program to the factory class. We can apply a singleton pattern on the factory class or make the factory method static
.
Note: Learn more about the Factory Design Pattern.
The abstract factory pattern is similar to the factory pattern and is a factory of factories. If you are familiar with the factory design pattern in Java, you will notice that we have a single factory class that returns the different subclasses based on the input provided and the factory class uses if-else
or switch
statements to achieve this. In the abstract factory pattern, we get rid of if-else
block and have a factory class for each subclass and then an abstract factory class that will return the subclass based on the input factory class.
Note: Learn more about the Abstract Factory Pattern.
The builder pattern was introduced to solve some of the problems with factory and abstract Factory design patterns when the object contains a lot of attributes. This pattern solves the issue with a large number of optional parameters and inconsistent state by providing a way to build the object step-by-step and provide a method that will actually return the final Object
.
Note: Learn more about the Builder Pattern.
The prototype pattern is used when the Object
creation is costly and requires a lot of time and resources, and you have a similar Object
already existing. So this pattern provides a mechanism to copy the original Object
to a new Object
and then modify it according to our needs. This pattern uses Java cloning to copy the Object
. The prototype design pattern mandates that the Object
which you are copying should provide the copying feature. It should not be done by any other class. However, whether to use the shallow or deep copy of the object properties depends on the requirements and is a design decision.
Note: Learn more about the Prototype Pattern.
Structural design patterns provide different ways to create a Class
structure (for example, using inheritance and composition to create a large Object
from small Object
s).
The adapter design pattern is one of the structural design patterns and is used so that two unrelated interfaces can work together. The object that joins these unrelated interfaces is called an adapter.
Note: Learn more about the Adapter Pattern.
The composite pattern is used when we have to represent a part-whole hierarchy. When we need to create a structure in a way that the objects in the structure have to be treated the same way, we can apply the composite design pattern.
Note: Learn more about the Composite Pattern.
The proxy pattern provides a placeholder for another Object
to control access to it. This pattern is used when we want to provide controlled access to functionality.
Note: Learn more about the Proxy Pattern.
The flyweight design pattern is used when we need to create a lot of Object
s of a Class
. Since every Object
consumes memory space that can be crucial for low-memory devices (such as mobile devices or embedded systems), the flyweight design pattern can be applied to reduce the load on memory by sharing Object
s.
String pool implementation in Java is one of the best examples of flyweight pattern implementation.
Note: Learn more about the Flyweight Pattern.
The facade pattern is used to help client applications easily interact with the system.
Note: Learn more about the Facade Pattern.
When we have interface hierarchies in both interfaces as well as implementations, then the bridge design pattern is used to decouple the interfaces from the implementation and to hide the implementation details from the client programs. The implementation of the bridge design pattern follows the notion of preferring composition over inheritance.
Note: Learn more about the Bridge Pattern.
The decorator design pattern is used to modify the functionality of an object at runtime. At the same time, other instances of the same class will not be affected by this, so the individual object gets the modified behavior. The decorator design pattern is one of the structural design patterns (such as adapter pattern, bridge pattern, or composite pattern) and uses abstract classes or interface with the composition to implement. We use inheritance or composition to extend the behavior of an object, but this is done at compile-time, and it’s applicable to all the instances of the class. We can’t add any new functionality to remove any existing behavior at runtime – this is when the decorator pattern is useful.
Note: Learn more about the Decorator Pattern.
Behavioral patterns provide a solution for better interaction between objects and how to provide loose-coupling and flexibility to extend easily.
The template method pattern is a behavioral design pattern and is used to create a method stub and to defer some of the steps of implementation to the subclasses. The template method defines the steps to execute an algorithm, and it can provide a default implementation that might be common for all or some of the subclasses.
Note: Learn more about the Template Method Pattern.
The mediator design pattern is used to provide a centralized communication medium between different objects in a system. If the objects interact with each other directly, the system components are tightly-coupled with each other which makes maintainability cost higher and not flexible to extend easily. The mediator pattern focuses on providing a mediator between objects for communication and implementing loose-coupling between objects. The mediator works as a router between objects, and it can have its own logic to provide a way of communication.
Note: Learn more about the Mediator Pattern
The chain of responsibility pattern is used to achieve loose-coupling in software design where a request from the client is passed to a chain of objects to process them. Then the object in the chain will decide who will be processing the request and whether the request is required to be sent to the next object in the chain or not.
We know that we can have multiple catch
blocks in a try-catch
block code. Here every catch
block is kind of a processor to process that particular exception. So when an exception occurs in the try
block, it’s sent to the first catch
block to process. If the catch
block is not able to process it, it forwards the request to the next Object
in the chain (i.e., the next catch
block). If even the last catch
block is not able to process it, the exception is thrown outside of the chain to the calling program.
Note: Learn more about the Chain of Responsibility Pattern.
An observer design pattern is useful when you are interested in the state of an Object
and want to get notified whenever there is any change. In the observer pattern, the Object
that watches the state of another Object
is called observer, and the Object
that is being watched is called subject.
Java provides an built-in platform for implementing the observer pattern through the java.util.Observable
class and java.util.Observer
interface. However, it’s not widely used because the implementation is limited and most of the time we don’t want to end up extending a class solely for implementing the observer pattern as Java doesn’t provide multiple inheritances in classes. Java Message Service (JMS) uses the observer pattern along with the mediator pattern to allow applications to subscribe and publish data to other applications.
Note: Learn more about the Observer Pattern.
Strategy pattern is used when we have multiple algorithms for a specific task, and the client decides the actual implementation be used at runtime. A strategy pattern is also known as a policy pattern. We define multiple algorithms and let client applications pass the algorithm to be used as a parameter.
One of the best examples of this pattern is the Collections.sort()
method that takes the Comparator parameter. Based on the different implementations of comparator interfaces, the objects are getting sorted in different ways.
Note: Learn more about the Strategy Pattern.
The command pattern is used to implement loose-coupling in a request-response model. In this pattern, the request is sent to the invoker and the invoker passes it to the encapsulated command object. The command object passes the request to the appropriate method of receiver to perform the specific action.
Note: Learn more about the Command Pattern.
The state design pattern is used when an Object
changes its behavior based on its internal state. If we have to change the behavior of an Object
based on its state, we can have a state variable in the Object
and use if-else
condition block to perform different actions based on the state. The state pattern is used to provide a systematic and loosely-coupled way to achieve this through context and state implementations.
Note: Learn more about the State Pattern.
The visitor pattern is used when we have to perform an operation on a group of similar kinds of objects. With the help of a visitor pattern, we can move the operational logic from the objects to another class.
Note: Learn more about the Visitor Pattern.
The interpreter pattern is used to define a grammatical representation of a language and provides an interpreter to deal with this grammar.
The iterator pattern is one of the behavioral patterns and is used to provide a standard way to traverse through a group of objects. The iterator pattern is widely used in Java Collection Framework where the iterator interface provides methods for traversing through a Collection
. This pattern is also used to provide different kinds of iterators based on our requirements. The iterator pattern hides the actual implementation of traversal through the Collection
and client programs use iterator methods.
Note: Learn more about the Iterator Pattern.
The memento design pattern is used when we want to save the state of an object so that we can restore it later on. This pattern is used to implement this in such a way that the saved state data of the object is not accessible outside of the Object
, this protects the integrity of saved state data.
Memento pattern is implemented with two Object
s – originator and caretaker. The originator is the Object
whose state needs to be saved and restored, and it uses an inner class to save the state of Object
. The inner class is called “Memento”, and it’s private
so that it can’t be accessed from other objects.
There are a lot of design patterns that don’t come under Gang of Four design patterns. Let’s look at some of these popular design patterns.
The Data Access Object (DAO) design pattern is used to decouple the data persistence logic to a separate layer. DAO is a very popular pattern when we design systems to work with databases. The idea is to keep the service layer separate from the data access layer. This way we implement the separation of logic in our application.
Note: Learn more about the DAO Pattern.
The dependency injection pattern allows us to remove the hard-coded dependencies and make our application loosely-coupled, extendable, and maintainable. We can implement dependency injection in Java to move the dependency resolution from compile-time to runtime. Spring framework is built on the principle of dependency injection.
Note: Learn more about the Dependency Injection Pattern.
Model-View-Controller (MVC) Pattern is one of the oldest architectural patterns for creating web applications.
This article summarized Java design patterns.
You can check out Java design patterns example code from our GitHub Repository.
Continue your learning with more Java tutorials.
Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.
Hey your blog is really good. congratulation
- Nestor
Hi Pankaj, Thanks a lot for the tutorial. Could you please also include J2EE Design Patterns also. (MVC, Business Delegates…)
- Syam
Hi your blog is really good, I request you to post more on struts2 from basics to advance.
- Naveen
This tutorial was very helpful ; thanks Pankaj …waiting for J2EE Design Patterns tutorial
- Varun
One of the best article on Design pattern, Thanks.
- Usha
Excellent Explanation, Wonderful examples to understood easily… Thanks
- Ravikumar
This is a really good blog, and I always follow your blog whenever I need any clearance.
- job@basware.com
Excellent site to know about all design patterns.
- SRK
Great work! Thanks.
- chandrani
This is excellent work sir !!! really helpful
- Delli Babs