This article will explore the llama factory, released on 21 March 2024, and learn how to fine-tune Llama 3 on a cloud GPU. For our task, we will use the NVIDIA A4000 GPU, considered one of the most powerful single-slot GPUs, enabling seamless integration into various workstation setups.
Utilizing the NVIDIA Ampere architecture, the RTX A4000 integrates 48 second-generation RT Cores, 192 third-generation Tensor Cores, and 6,144 CUDA cores alongside 16GB of graphics memory with error-correction code (ECC); this ensures precise and reliable computing for innovative projects.
Until recently, fine-tuning a large language model was a complex task mainly reserved for machine learning and A.I. experts. However, this notion is changing rapidly with the ever-evolving field of artificial intelligence. New tools like Llama Factory are emerging, making the fine-tuning process more accessible and efficient. In addition, one can now use techniques such as DPO, ORPO, PPO, and SFT for fine-tuning and model optimization. Furthermore, you can now efficiently train and fine-tune models such as Llama, Mistral, Falcon, and more.
This is an intermediate level tutorial which details the process of finetuning a LLaMA 3 model with a demo. We recommend all readers are familiar with the general functionality of Generative Pretrained Transformers before continuing.
To run the demo, a sufficiently powerful NVIDIA GPU is required. We recommend using an H100.
Fine-tuning a model involves adjusting the parameters of a pre-trained or base model that can be used for a specific task or dataset, enhancing its performance and accuracy. This process involves providing the model with new data and modifying its weights, biases, and certain parameters to minimize loss and cost. By doing so, this new model can perform well on any new task or dataset without starting from scratch, helping to save time and resources.
Typically, when a new large language model (LLM) is created, it undergoes training on a large corpus of textual data, which may include potentially harmful or toxic content. Following the pre-training or initial training phase, the model is fine-tuned with safety measures, ensuring it avoids generating harmful or toxic responses. However, this approach could be better. Nonetheless, the concept of fine-tuning addresses the need to adapt models to specific requirements.
Enter the Llama Factory, a tool that facilitates the efficient and cost-effective fine-tuning of over 100 models. Llama Factory streamlines the process of fine-tuning models, making it accessible and user-friendly. It also has a hugging face space provided by Hiyouga that can be used to fine-tune the model.
This space also supports Lora and GaLore configuration to reduce GPU usage. With an easy slider bar, users can easily change parameters such as drop-out, epochs, batch size, etc. There are also multiple dataset options to choose from to fine-tune your model. As discussed in this article, the Llama Factory supports many models, including different versions of llama, mistral, and Falcon. It also supports advanced algorithms like galore, badm, and Lora, offering various features such as flash attention, positional encoding, and scaling.
Additionally, you can integrate monitoring tools like TensorBoard, VanDB, and MLflow. For faster inference, you can utilize Gradio and CLI. In essence, the Llama Factory provides a diverse set of options to enhance model performance and streamline the fine-tuning process.
LLaMA Board is a user-friendly tool that helps people adjust and improve Language Model (LLM) performance without needing to know how to code. It’s like a dashboard where you can easily customize how a language model learns and processes information.
Here are some key features:
Let’s log in to the platform, select the GPU of your choice, and start the notebook. You can also click the link in the article to help you start the notebook.
We will start by cloning the repo and installing the necessary libraries,
Next, we will install unsloth, which allows us to finetune the model efficiently. Further, we will install xformers and bitsandbytes.
Once everything is installed, we will check the GPU specifications,
Next, we will import torch and check our CUDA because we are using GPU,
We will now import the dataset which comes with the GitHub repo that we cloned. We can also create a custom dataset and use that instead.
Once this is done, we will execute the code below to generate the Gradio web app link for Llama Factory.
You can click on the generated public link to continue onto the GUI.
This will start the training.
We will also start the training and fine-tuning using the CLI commands. You can use the below code to specify the parameters.
Next, open a terminal and run the below command
This will start the training process.
Once the model training is completed, we can use the model to infer from. Let us try doing that and check how the model works.
Here, we define our model with the saved adapter, select chat templates, and specify user-assistant interactions.
Next, run the below code using your terminal.
We recommend our users to try Llama-Factory with any model and experiment with the parameters.
Effective fine-tuning has become one of the necessity for large language models (LLMs) to adapt itself for specific tasks. However, it requires some amount of effort and is quite challenging sometimes. With the introduction to LLama-Factory, a comprehensive framework that consolidates advanced efficient training techniques users can easily customize fine-tuning for over 100 LLMs without coding requirements.
Many people are now more curious about large language models (LLMs) will tend to get drawn to LLama-Factory to see if they can adjust their own models. This helps the open-source community grow and become more active. LLama-Factory is becoming well-known and has even been highlighted in Awesome Transformers3 as a leading tool for fine-tuning LLMs efficiently.
We hope that this article encourages more developers to use this framework to create LLMs that can benefit society. Remember, it’s important to follow the rules of the model’s license when using LLama-Factory to fine-tune LLMs to prevent any potential misuse.
With this we come to an end of this article, we saw how easy it is nowadays to fine-tune any model within minutes. We can also use hugging face CLI to push this model to hugging face hub.
Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.
This textbox defaults to using Markdown to format your answer.
You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!